
Documentation of open-source MFIX–DEM software for gas-solids

flows1

R. Garg

rahul.garg@gmail.com

National Energy Technology Laboratory

Morgantown, WV, USA

J. Galvin

janine.galvin@netl.doe.gov

National Energy Technology Laboratory

Albany, OR, USA

T. Li

litingwen@gmail.com

National Energy Technology Laboratory

Morgantown, WV, USA

S. Pannala

pannalas@ornl.gov

Computer Science and Mathematics Division

Oak Ridge National Laboratory

Oak Ridge, TN, 37831, USA

February 1, 2010

1Refer to this document as: R. Garg, J. Galvin, T. Li, and S. Pannala Doc-
umentation of open-source MFIX–DEM software for gas-solids flows, From URL
https://mfix.netl.doe.gov/documentation/dem doc 2010.pdf

Table of Contents

1 Introduction and Background 2

2 Governing Equations 5
2.1 Gas-phase . 5
2.2 Solid-phase: Discrete Element Method (DEM) . 6

2.2.1 Contact Forces . 6
2.2.2 Relationship between dashpot coefficients and coefficients of restitution . . . 10
2.2.3 Hertzian Model . 10
2.2.4 Estimation of gas–solid momentum transfer term Igm 11

3 Computational Details 12
3.1 Time Integration . 13
3.2 Neighbor Search Algorithm . 14
3.3 Gas-Solids Coupling . 16

4 DEM Verification Tests 16
4.1 Freely Falling Particle . 16

4.1.1 Stage I: Free fall . 16
4.1.2 Stage II: Contact . 17
4.1.3 Stage III: Rebound . 18
4.1.4 Results . 18

4.2 Two Stacked Particles Compressed between Two Boundaries 20
4.2.1 Motion of Particle 1: Lower Particle . 20
4.2.2 Motion of Particle 2: Upper Particle . 21
4.2.3 Results . 23

4.3 Ball Slipping on a Rough Surface . 24
4.4 Particle Terminal Velocity . 25
4.5 Advection of a circle and sphere in an oscillating vortex field 26
4.6 Particle Motion in Vortex . 27

5 Summary 31

6 Future Work 32

Bibliography 33

A Gas-phase pressure correction for MFIX-DEM 36

B MFIX–DEM file list with purpose 37

C MFIX–DEM user input variables 38

1

Documentation of open-source MFIX–DEM
software for gas-solids flows - Version 2010-1 Garg, Galvin, Li, and Pannala

1 Introduction and Background

Multiphase flows are commonly observed in nature, such as rain drops in air, snowfall, volca-
noes, and sandstorms, and in various industries, such as energy production, chemical processing,
and pharmaceuticals. Examples include life-saving flu vaccines which may be delivered to the hu-
man body in the form of aerosols, or as a fine powder, and internal combustion engines where
finely-atomized fuel spray is injected into compressed air for efficient combustion and hence, less
atmospheric pollution. Two-phase flow of gas and liquid exists in oil–gas pipelines and wells, oil
refineries, air-lift pumps and steam boilers. Given their ubiquity, a better understanding of the
physical phenomena occurring in multiphase flows is needed so that current applications can be
made more efficient and environmentally friendly. The scope of the open source code described
herein is limited to two-phase flows consisting of dispersed solid particles (differing in size and den-
sity) in a carrier phase that may be either a liquid or gas. The following discussion on statistical
descriptions, however, is more broad and concerns two-phase flows where the dispersed phase may
be solid, liquid or gas, and the carrier phase is liquid or gas.

Two-phase flows are inherently random in nature due to the presence of embedded particles.
Therefore a two-phase flow cannot be meaningfully characterized with only one realization (Drew,
1983). Consequently, two-phase flows are typically described using statistical techniques. The most
common statistical descriptions for two–phase flows can be classified into two broad categories: (i)
Eulerian–Eulerian (EE) and (ii) Lagrangian–Eulerian (LE) representations. In the EE representa-
tion, the two phases are assumed to be interpenetrating continua. A continuum description, which
is typically comprised by a set of conservation equations, such as a mass and momentum balances, is
adopted for both the carrier phase and the dispersed phase (e.g., solid particles, droplets, bubbles).
Various averaging approaches have been applied to obtain the continuum conservation equations.
The earliest averaging techniques consist of both time and space averaging (and its variants based
on the choice of averaging region) (Frankl, 1953; Teletov, 1958; Anderson and Jackson, 1967; Drew,
1971). Later the concept of ensemble averaging (Drew, 1983; Kataoka and Serizawa, 1989; Drew and
Passman, 1998), which is defined as the process of averaging a quantity over several independent
realizations, was applied to derive the continuum equations.

In the LE statistical description (Williams, 1958; Subramaniam, 2000), a continuum description
is employed for the carrier phase and its form is generally identical to that in the EE representation.
In contrast, the dispersed phase is treated as being composed of discrete entities (or particles 1)
which can be statistically represented by the single particle distribution function. In spray literature
this function is referred to as the droplet distribution function (ddf) and evolution of the ddf results
in the famous spray equation (Williams, 1958). It is worth noting that by taking moments of the
evolution equation, the single particle distribution function can also be used to derive the continuum
conservation equation for the solid-phase. The kinetic theory for granular flows (KTGF) (Savage
and Jeffrey, 1981; Garzo et al., 2007) follows this approach for describing solid particulates. In
particular, continuum equations for solid-phase are obtained and constitutive relations for the
transport coefficients (such as the coefficients of viscosity, thermal diffusion coefficients, etc.) can
be found in terms of hydrodynamic variables (such as particle number density, inelasticity, granular
temperature, etc.).

From a numerical viewpoint, statistical descriptions notwithstanding, simulations that solve
the continuum conservation equations for both phases have traditionally been called as EE, Euler-
granular, or two fluid method (TFM) simulations. On the other hand, simulations that consider
the carrier phase as a continuum and the dispersed phase as made up of discrete entities have

1In this context particle may mean any dispersed–phase element, including solid particles, droplets or bubbles.

2

Documentation of open-source MFIX–DEM
software for gas-solids flows - Version 2010-1 Garg, Galvin, Li, and Pannala

Figure 1: A schematic showing a realization of two–phase flow along with various statistical de-
scriptions and resulting simulation types.

traditionally been called LE simulations. As discussed above and also shown by the schematic
in Fig. 1, continuum conservation equations for the dispersed phase can also be obtained from
the Lagrangian description. Therefore, calling all simulations that solve continuum conservation
equations for both phases as EE fails to distinguish between the underlying statistical descriptions
(LE or EE). Therefore, to distinguish statistical descriptions from numerical viewpoint, simulations
that consider both phases as continua will hereinafter be referred to as TFM simulations, while
simulations that consider the carrier phase as a continuum and the dispersed phase as discrete
particles (such as simulations of the current effort) will be referred to as continuum discrete method
(CDM).

A number of open source and commercial codes are capable of doing both TFM and CDM
simulations. For example, commercially available codes like Fluent, and open source codes like
CFDlib (Kashiwa and Rauenzahn, 1994), OpenFoam, and MFIX (Syamlal et al., 1993; Syamlal,
1998), are all capable of performing TFM simulations for chemically reacting multiphase flows.
Similarly, commercially available codes like Fluent and Barracuda, and open sources codes like
MFIX–DEM, KIVA (Amsden et al., 1989), Fluent DPM (Discrete Particle Method) and dense-
phase DPM modules, and OpenFoam, are all capable of CDM simulations. In regard to TFM
simulations, while all the above-mentioned codes solve for similar forms of the governing equations,
they primarily differ in their closures for various submodels (such as solid stresses, interphase drag,
etc.) and their numerical treatment. In regard to CDM simulations, like the TFM simulations
all the codes solve similar forms of the governing equations for the carrier phase (with differences
in numerical treatment, closure models, etc). For the dispersed phase, however, all codes except

3

Documentation of open-source MFIX–DEM
software for gas-solids flows - Version 2010-1 Garg, Galvin, Li, and Pannala

for MFIX–DEM employ a parcel-based (also called as computational/notional/nominal particles
based approach in literature) approach. In the parcel approach a finite number of parcels are
tracked rather than using actual individual particles as dictated by the number density of the
solid-phase. Each parcel may represent either a fractional number of real particle or many real
particles grouped together to form a single parcel. For example, in very dilute regions of spray
applications, many parcels are used to represent one real particle in order to mitigate the high
statistical errors that would be associated with very few real particles. On the other extreme, in
very dense fluidized bed like applications or device-scale problems, many real particles are grouped
together and are represented by a single parcel in order to reduce the high computational cost
with tracking the real number of particles. Since the particles in this approach are represented
by statistically weighted parcels, the collisions between parcels (unlike collisions between particles)
cannot be directly resolved necessitating the use of indirect collision models. For example stochastic
collision models, such as the droplet collision algorithm of O’Rourke and Amsden (1987) (used in
Fluent DPM and OpenFoam) or the less expensive (but similar) no time counter algorithm of Bird
(1994), have been used for calculating collisions in CDM simulations of dilute gas-solids flows. For
CDM simulations of dense gas-solids flows, the collisions between parcels have been modeled by an
ad-hoc solid stress term that prevents the solids from over packing (e.g., Fluent’s dense-phase DPM
and Barracuda). In MFIX–DEM code (for CDM simulations) the dispersed phase is represented by
actual individual particles and the collisions are directly resolved using the soft-sphere (based on
a spring-dashpot model) approach of Cundall and Strack (1978). While simulations using MFIX–
DEM are limited to small problem sizes due to high computational cost incurred in the particle
neighbor search algorithm, this approach (using actual particles) does serve as a good tool to verify
and also develop new closures for various submodels used in TFM simulations.

The above discussion focused on TFM and CDM simulations, which are designed to model
two-phase flows having both a carrier and disperse phase. Advanced codes are also available
for studying pure particulate (or granular) flows in the absence of a carrier phase. In all such
codes the solid-phase is represented by actual particles and collisions are directly resolved. Such
simulations are generally referred to as Discrete Element Method (DEM) simulations (cf. Fig. 1).
Examples of DEM simulation codes include open source codes, such as LAMMPS (Silbert et al.,
2001) and Yade (Galizzi and Kozicki, 2005), and commercial codes, such as EDEM (http:www.dem-
solutions.comindex.php) and Itasca (Itasca, 2010). Efforts to couple such standalone DEM codes to
existing CFD solvers have recently been undertaken with the goal to leverage the combined abilities
that were originally developed for each code individually. For example, EDEM code provides
users the ability to couple its DEM modules with other CFD codes such as Fluent. Very recently
OpenFoam has been coupled to Yade (Chen, 2009) and LAMMPS. However, these OpenFoam codes
for CDM type simulations are still in the beta stage and are unavailable to the CFD community.
Although, EDEM, a commercial code, provides coupling hooks with other commercial CFD codes
such as Fluent, the inability of users to readily understand and modify the source code limits it to
mostly end/expert users.

The open source MFIX–DEM code can be used for DEM, CDM, and TFM simulations from
a single source code. A basic structure for DEM and CDM simulations has existed in MFIX for
several years. Despite this time and even though MFIX provides an excellent opportunity to run
different statistical descriptions from one software platform, MFIX has not been as widely used
for CDM and DEM simulations as it has for TFM simulations. We are building on the MFIX–
DEM developments that resulted in two theses (Boylakunta, 2003; Weber, 2004) and the previous
documentation (Boyalakuntla and Pannala, 2006).

The MFIX–DEM code has recently been extensively debugged. The spring-dashpot model has
been rigorously verified by performing a series of mple tests, such as a freely falling particle, two

4

Documentation of open-source MFIX–DEM
software for gas-solids flows - Version 2010-1 Garg, Galvin, Li, and Pannala

stacked particles compressed between two boundaries, and a particle sliding on a rough surface.
The purpose of these simple tests is to verify independently each component of the spring-dashpot
model. For the CDM simulations, qualitative and quantitative analysis of particles in vortex flows
has been performed to validate the accuracy of gas-solids coupling. This report documents the
current MFIX–DEM code along with pointers to the code and a discussion on the theory. The
document will continue to evolve as more verification/validation cases are added and new features
are incorporated. If you have any comments or suggestions, please feel free to send them to the
authors so that we can continue to improve the code capabilities and the documentation so that
the code can be easily used and reviewed.

In the next section, the details of CDM and DEM simulations are provided in a manner that is
consistent with the MFIX–DEM implementation.

2 Governing Equations

In MFIX–DEM, the gas–phase governing equations for mass and momentum conservation are sim-
ilar to those in traditional gas–phase CFD but with additional coupling terms due to drag from the
solids–phase. The solids-phase is modeled using discrete particles. The current implementation of
MFIX–DEM is restricted only to hydrodynamics (no chemistry or heat and mass transfer abilities).
Work is under way to extend the DEM implementation to include these additional physics. Below
is a list of the governing equations along with the numerical implementation, including the coupling
procedure.

2.1 Gas-phase

The governing equations, implemented in MFIX (Syamlal et al., 1993), for the gas–phase conti-
nuity and momentum conservation in the absence of phase change, chemical reactions, growth,
aggregation, breakage phenomena, are:

∂(εgρg)

∂t
+ ∇ · (εgρgvg) = 0 ; (1)

and

D

Dt
(εgρgvg) = ∇ · Sg + εgρgg −

M
∑

m=1

Igm . (2)

In the above equation, εg is the gas–phase volume fraction, ρg is the thermodynamic density of
the gas phase, vg is the volume–averaged gas–phase velocity, Igm is the momentum transfer term

between the gas and the mth solid phase, and Sg is the gas–phase stress tensor given by

Sg = −PgI + τg, (3)

where Pg is the gas–phase pressure. Also, τg is the gas–phase shear stress tensor,

τg = 2µgDg + λg∇ · tr(Dg)I , (4)

where Dg = 1
2

[

∇vg + (∇vg)
T
]

is the strain rate tensor, and µg and λg are the dynamic and second
coefficients of viscosity of the gas phase. Discussion and definition of the interphase momentum
transfer term is reserved until section 2.2.4.

5

Documentation of open-source MFIX–DEM
software for gas-solids flows - Version 2010-1 Garg, Galvin, Li, and Pannala

2.2 Solid-phase: Discrete Element Method (DEM)

In the DEM approach, the mth solid–phase is represented by Nm spherical particles with each
particle having diameter Dm and density ρsm. Solid phases are differentiated based according to
radii and densities. Accordingly, the diameter and density of the mthsolid–phase is denoted by
Dm and ρsm, respectively. For total of M solid phases, the total number of particles is equal to

N =
M
∑

m=1
Nm. These Nparticles are represented in a Lagrangian frame of reference at time t by

{X(i) (t) ,V(i) (t) ,ω(i) (t) ,D(i), ρ(i) i = 1, . . . ,N}, where X(i) (t) denotes the ith particle’s position,
V(i)(t) and ω(i) denote its linear and angular velocities, D(i) denotes its diameter, and ρ(i) represents
its density. It is implicit that if a particle belongs to mth solid–phase, then its diameter and density
are, respectively, equal to Dm and ρsm (i.e., equal to the diameter and density of the mth solid–

phase). The mass m(i) and moment of inertia I(i) of the ith particle are equal to ρ(i) πD(i)3

6

and
m(i)D(i)2

10
, respectively. The position, linear and angular velocities of the ith particle evolve

according to Newton’s laws as:

dX(i) (t)

dt
= V(i) (t) , (5)

m(i) dV
(i) (t)

dt
= F

(i)
T = m(i)g + F

(i∈k,m)
d (t) + F(i)

c (t) , (6)

I(i) dω(i) (t)

dt
= T(i) (7)

(8)

where g is the acceleration due to gravity, F
(i∈k,m)
d is the total drag force (pressure + viscous) on

ith particle residing in kth cell and belonging to the mth solid–phase, F
(i)
c is the net contact force

acting as a result of contact with other particles, η is the outward pointing normal unit vector along

the particle radius, T(i) is the sum of all torques acting on the ith particle, and F
(i)
T is the net sum

of all forces acting on the ith particle. The next four subsections discuss in detail the calculation
of the contact and drag forces.

2.2.1 Contact Forces

The advantage of the DEM approach over that of solving continuum equations for solid–phase lies
in its explicit treatment of particle–particle collisions. For two–phase flows, hard–sphere (based on
the event driven algorithm, first proposed by Allen and Tildesley (1989)) and soft–sphere (based on
the spring–dashpot model, first proposed by (Cundall and Strack, 1978)) models are the two most
commonly used approaches. In the hard–sphere approach, collisions are binary and instantaneous,
whereas the soft–sphere approach imposes no such restrictions, thus it is possible to have enduring,
multi–particle contacts. In the event driven (hard–sphere) approach, the time step is determined
by the minimum collision time between any one pair of particles — which is directly proportional to
the mean free path or inversely proportional to the particle volume fraction. Therefore, the hard–
sphere approach is most suitable for dilute systems, since in denser systems the minimum collision
time becomes much smaller than other time scales. Also, in dense regions, momentum transfer
occurs more through enduring contacts (the so called quasi–static regime) than through binary
collisions. Even in gas–particle systems that are nominally dilute, the preferential concentration of

6

Documentation of open-source MFIX–DEM
software for gas-solids flows - Version 2010-1 Garg, Galvin, Li, and Pannala

particles to the high strain rate regions of gas flow can result in locally dense regions which require
very small time steps to resolve. The time step in the soft–sphere approach, although small and a
function of the spring stiffness, does not vary with the volume fraction. Although the hard–sphere
approach may be a good alternative in some systems, the soft–sphere approach is generally more
robust due to the independence of the time step size from the volume fraction.

D

Vi

Vj

j

i

x

y

ij

Figure 2: Schematic of two particles i and j having diameters Di and Dj in contact. Particles have
linear and angular velocities equal to Vi,Vj and ωi, ωj , respectively. Overlap δn = 0.5(Di+Dj)−D.
ηij is the vector along the line of contact pointing from particle i to particle j.

Below the soft–sphere collision approach implemented in MFIX–DEM code is detailed. As
shown by the schematic in Fig. 2, consider two particles i and j in contact that have diameters
equal to D(i) and D(j) and are located at X(i) and X(j). The particle i is moving with linear
and angular velocities equal to V(i) and ω(i), respectively. Similarly, the particle j is moving with
linear and angular velocities equal to V(j) and ω(j), respectively. The normal overlap between the
particles is calculated as

δn = 0.5
(

D(i) + D(j)
)

−
∣

∣

∣
X(i) − X(j)

∣

∣

∣
. (9)

The unit vector along the line of contact pointing from particle i to particle j is

ηij =
X(j) − X(i)

∣

∣X(j) − X(i)
∣

∣

, (10)

and the relative velocity of the point of contact becomes

Vij = V(i) − V(j) +
1

2

(

L(i)ω(i) + L(j)ω(j)
)

× ηij, (11)

where L(i) and L(j) are the distance of the ontact point from the center of particles ith and jth,
respectively. They are given by

L(i) =

∣

∣X(j) − X(i)
∣

∣

2
+ r(i)2 − r(j)2

2
∣

∣X(j) − X(i)
∣

∣

, (12)

and
L(j) =

∣

∣

∣
X(j) − X(i)

∣

∣

∣
− L(i), (13)

7

Documentation of open-source MFIX–DEM
software for gas-solids flows - Version 2010-1 Garg, Galvin, Li, and Pannala

where r(i) = 0.5D(i) and r(j) = 0.5D(j) are the particle radii.
Therefore, the normal Vnij and tangential Vtij components of contact velocity, respectively,

are
Vnij = Vij · ηij ηij ≡

(

V(i) − V(j)
)

· ηij ηij, (14)

and
Vtij = Vij − Vij · ηij ηij. (15)

The tangent to the plane of contact tij is

tij =
Vtij

|Vtij |
. (16)

Figure 3: Schematic of the spring–dashpot system used to model particle contact forces in soft–
sphere approach.

In soft–sphere approach, the overlap between the two particles is represented as a system of
springs and dashpots (Fig. 3) in both normal and tangential directions. The spring causes the
rebound off the colliding particles and the dashpot mimics the dissipation of kinetic energy due
to inelastic collisions. The spring stiffness coefficients in the tangential and normal directions are
kt and kn, respectively. Similarly, the dashpot damping coefficients in the tangential and normal
directions are ηt and ηn, respectively. The spring stiffness and dashpot damping coefficients are
essentially a function of the solid–phases the colliding particles belong to. For example, if the ith

particle belongs to mth solid–phase and the jth particle belongs to ℓth solid–phase, then the spring
stiffness coefficients are given by knmℓ and ktmℓ. Similarly, the dashpot damping coefficients are
given by ηnmℓ and ηtmℓ. However, in order to keep the formulation simple, the subscripts (m, ℓ) are
dropped and it is noted that the spring stiffness and dashpot damping coefficients will depend on
the solid–phases the colliding particles belong to.

The normal and tangential components of the contact force Fij , at time t, are decomposed into
the spring (conservative) force FS

ij and the dashpot (dissipative) force FD
ij as

Fnij (t) = FS
nij (t) + FD

nij (t) , (17)

and
Ftij (t) = FS

tij (t) + FD
tij (t) . (18)

8

Documentation of open-source MFIX–DEM
software for gas-solids flows - Version 2010-1 Garg, Galvin, Li, and Pannala

The normal spring force FS
nij at any time during the contact is calculated based on the overlap

δn between the particles and is given by

FS
nij = −knδnηij. (19)

For tangential spring force, a time history is maintained. At the initiation of the contact the
A time history of the tangential spring force is maintained once the contact initiates. At any

time during the contact, the tangential spring force is given by

FS
tij = −ktδt (20)

where δt is the tangential displacement. At the initiation of the contact the tangential displacement
is calculated as

δt = Vtij min

(|δn|
Vij · ηij

,∆t

)

. (21)

At time (t + ∆t) the tangential displacement is calculated as

δt(t + ∆t) = δt(t) + Vtij∆t. (22)

In the above expression the accumulated tangential displacement δt(t) at time t will not necessarily
lie on the tangent plane at t + ∆t. Therefore, the above expression for tangential displacement is
further corrected to ensure that the tangential displacement lies in the current tangent plane. The
corrected tangential displacement is obtained by subtracting the normal component of δt(t + ∆t)
from δt(t + ∆t) itself, which is given as

δt(t + ∆t) = δt(t + ∆t) −
(

δt(t + ∆t) · ηij

)

ηij . (23)

For the case of finite Coulomb friction between particles 2, if the following holds at any time
during the contact,

|Ftij | > µ |Fnij| , (24)

then the sliding is assumed to occur and the tangential contact force is given by

Ftij =

−µ |Fnij| tij if tij 6= 0

−µ |Fnij| δt

|δt|
if tij = 0, δt 6= 0

0 otherwise.

(25)

It is important to note that the ith particle in the contact i− j pair experiences a contact force
equal to Fij and the jth particle, according to Newton’s third law of motion, experiences an equal

and opposite contact force (i.e. −Fij). Therefore, the total contact force F
(i)
c (t) at any time on

the ith particle is given as

F(i)
c (t) =

N
∑

j=1
j 6=i

(

FS
ij (t) + FD

ij (t)
)

(26)

and the total torque acting on ith particle is calculated by

T(i) (t) =

N
∑

j=1
j 6=i

(

L(i)ηij × Ftij (t)
)

(27)

2Like for the spring stiffness and dashpot damping coefficients, the friction coefficient µmℓ will also depend on the
solid–phases the colliding particles belong to. However, for the sake of clarity, the subscripts are omitted in favor of
just µ.

9

Documentation of open-source MFIX–DEM
software for gas-solids flows - Version 2010-1 Garg, Galvin, Li, and Pannala

2.2.2 Relationship between dashpot coefficients and coefficients of restitution

For collisions between particles belonging to the mth and ℓth solid–phases, the normal dashpot
damping coefficient ηnmℓ is related to the normal coefficient of restitution enmℓ (Silbert et al., 2001)
by

enmℓ = exp

(

−
ηnmℓ tcoln,mℓ

2meff

)

, (28)

where meff = mmmℓ/(mm + mℓ) is the effective mass and tcoln,mℓ is the collision time between m and
ℓ solid phases. It is given by

tcoln,mℓ = π

(

knmℓ

meff
− η2

nmℓ

4m2
eff

)−1/2

. (29)

From the above two expressions, ηnml is obtained as

ηnmℓ =
2
√

meffknmℓ |ln enmℓ|
√

π2 + ln2 enmℓ

, (30)

and a similar expression can be written for ηtmℓ.
The time step ∆t is typically taken to be equal to one by fifty of the minimum collision time (i.e.

∆t = min(tcol,mℓ/50)). Specification of spring stiffness coefficients in DEM simulations is problem-
atic. If values close to the real physical values are chosen, then the time step will become very small,
prohibiting any large–scale study. Therefore a value of normal spring stiffness coefficient∼ 105, is
usually specified. The tangential spring stiffness coefficient is set equal to two–fifths of the normal
stiffness coefficient (i.e., ktml = 2/5kn,∀m, l). The tangential damping coefficient is generally taken
to be half of normal damping coefficient (i.e., ηtml = 0.5ηnml,∀m, l). In gas–particle flows, since the
drag force also opposes the particle velocity, a spring stiffness less than that used in pure granular
flows can be utilized.

For M solid–phases, the coefficients of restitution will be M × M symmetric matrices. For
example, the coefficient of normal restitution matrix can be written as

[en] =

en11 en12 . . . en1M

en21 en22 . . . en2M
...

...
...

...
enM1 enM2 . . . enMM

, (31)

and likewise for the tangential coefficient of restitution. Since the above matrix is symmetric, the
user needs to input only M(M − 1)/2 (top diagonal or lower diagonal) values for normal coefficient
of restitution between particle–particle collisions. These M(M −1)/2 values can be specified in the
“mfix.dat” file by the array name “DES EN INPUT”. The values are specified for the top diagonal
entries of the above matrix from left to right in the following order

{DES EN INPUT} = {en11, en12, . . . , en1M , en22, en23, . . . , en2M , . . . enMM} (32)

2.2.3 Hertzian Model

In MFIX-DEM the linear spring dashpot model, discussed above, is the default model used to
describe particle-particle and particle-wall collisions. Alternatively, the Hertzian model, could
be used for resolving collisions since it has also been implemented in MFIX-DEM. According to
Hertzian contact theory, the normal and tangential spring stiffnesses between contacting particles

10

Documentation of open-source MFIX–DEM
software for gas-solids flows - Version 2010-1 Garg, Galvin, Li, and Pannala

i and j belonging to the mth and ℓth solid–phases can be calculated from the Young’s modulus and
Poisson ratio as follows

kn,ij =
4

3

EmEl

√

r∗ml

Em(1 − σ2
l) + El(1 − σ2

m)
δ

1
2
n,ij, (33)

and

kt,ij =
16

3

GmGl

√

r∗ml

Gm(2 − σl) + Gl(2 − σm)
δ

1
2
n,ij, (34)

where Em and El are the Young’s moduli and σm and σl are the Poisson ratios for mth and lth

solid–phase, respectively. Gm, Gl are the shear moduli calculated as Gm = Em

2(1+σm) , Gl = El

2(1+σl)
,

and 1
r∗
ml

= 1
r(m) + 1

r(l) . The damping coefficients are related to the spring stiffness and restitution

coefficients as given earlier by Eq. 30.
Similar treatment is applied for the wall-particle contact. By default, the linear spring-dashpot

model is used in the DEM simulation. To active the Hertzian model, the key word “DES COLL MODEL”
must be set to “HERTZIAN” and material properties, including Young’s modulus, Poisson ratio,
and normal and tangential restitution coefficients, must be specified.

2.2.4 Estimation of gas–solid momentum transfer term Igm

In this section since we are interested in calculating the momentum interaction term Igm between
the gas–phase and mth solid–phase, the discussion is limited to particles belonging to mth solid–
phase.

Consider ith particle, belonging to mth solid–phase, that resides in kth computational cell at
time t. The drag force on this particle is represented as

F
(i∈k,m)
d = −∇Pg(X

(i))Vm +
β

(i∈k)
m Vm

εsm

(

vg(X
(i)) −V(i)

)

, (35)

where Pg(X
(i)) and vg(X

(i)) are the gas–phase mean pressure Pg and velocity vg fields at the

particle location, Vm = πD3
m

6 is the particle volume, and β
(i∈k)
m is the local gas–solid momentum

transfer coefficient for particle i residing in kth cell. An explicit functional form of β
(i∈k)
m is not known

theoretically and, therefore, different correlations deduced from experimental and numerical studies

are used to model this term. Nevertheless, a general parametrization for β
(i∈k)
m that subsumes

different models can be written as

β(i∈k)
m = β

(

ρm,Dm,
∣

∣

∣
V(i) − vg(X

(i))
∣

∣

∣
, ρg, µg

)

. (36)

The gas–solid momentum transfer term Igm, at xk, that enters the gas–phase momentum con-
servation equation (Eq. 2) is computed as

Ik
gm =

1

Vk

Nm
∑

i=1

F
(i∈k,m)
d K(X(i)

m ,xk), (37)

where K(X
(i)
m ,xk) is a generic kernel with compact support and determines the influence of the

particle force at X
(i)
m on a grid node located at xk, and Vm is the geometric volume of the kth grid

cell.
In MFIX–DEM, there are two methods available to calculate the above drag force. In the first

method, for a particle residing in kth cell, rather than computing mean gas–phase velocity at the

11

Documentation of open-source MFIX–DEM
software for gas-solids flows - Version 2010-1 Garg, Galvin, Li, and Pannala

particle location vg(X
(i)), a cell–centered value of vg is used. Similarly, rather than using velocity

of each particle V(i), a local cell averaged velocity of the mth solid–phase vsm is used. With this
simplification, the momentum transfer coefficient for all particles of mth solid–phase that reside in
cell k is constant and has the following functional form

β(∀i∈k)
m = β(k)

m = (ρm,Dm, |vsm (xk) − vg (xk)| , ρg, µg) , (38)

where xk is the center of the kth cell. Therefore, the drag force on the ith particle belonging to
solid–phase m and residing in cell k is

F
(i∈k,m)
d = −∇Pg (xk)Vm +

β
(k)
m Vm

εsm
(vg (xk) − vsm (xk)) . (39)

Under this approximation of constant drag force on all particles residing in a particular cell, the
gas–solid momentum transfer term Ik

gm is estimated in kth cell as

Ik
gm = −εsm∇Pg (xk) + β(k)

m (vg (xk) − vsm (xk)) . (40)

In the second method to calculate gas–solid momentum transfer term, the mean gas–phase
velocity is interpolated to the particle location. Using Eq. 37, the drag force on each particle is then
projected back onto to the Eulerian gas–phase grid. However, in order to avoid the complexities
in numerical algorithm that will arise as a result of forward and backward interpolation of the
gas–phase pressure field, the pressure drag force term is evaluated at the cell center (resulting in
equal pressure drag force on all particles residing in a particular cell). Therefore, the gas–solid
momentum transfer term Ik

gm is estimated in kth cell as

Ik
gm = −εsm∇Pg (xk) +

1

Vk

Nm
∑

i=1

β
(i∈k)
m Vm

εsm

(

vg(X
(i)
m) − V(i)

m

)

K(X(i)
m ,xk). (41)

The first method is the default. In order to turn on the second method, set the variable
‘DES INTERP ON’ to ‘.TRUE.’ in the input file.

3 Computational Details

In this section, we will give you a short overview of the computational implementation of the
above physics algorithms in the MFIX–DEM code. This should serve as a starting point for under-
standing the numerical methods, code structure, and implementation. A more detailed Doxygen
output can be downloaded from the MFIX website for those who wish to dig deeper into the code
(https://mfix.netl.doe.gov/documentation/dem refman.pdf). In addition, we have placed the html
version of Doxygen output at https://mfix.netl.doe.gov/members/develop/doxygen docs/dem/main.html
so that one can browse through the code easily.

Below is the algorithm implemented in MFIX and a graphical version of this call sequence is
provided in Fig. 4.

We do not delve into the details of the numerical methods employed for the continuum part
of the MFIX–DEM as they are widely covered elsewhere (Syamlal, 1998). The important com-
putational aspects of DEM method for coupled gas-granular flows are time-integration, neighbor
search algorithms and interpolation of the continuum quantities to the discrete particle locations
and vice-versa. We provide more details of these important aspects below:

12

Documentation of open-source MFIX–DEM
software for gas-solids flows - Version 2010-1 Garg, Galvin, Li, and Pannala

MFIX

Time March

Get Data

DES Time March

MAKE_ARRAYS_DES

WRITE_DES_DATA

CALC FORCE DES

CFNEWVALUES

DES Check Particle

DES Granular Temperature

DES Mass Inlet

NEIGHBOUR

WRITE DES DATA

PARTICLES IN CELL

WRITE DES RESTART

Init Namelist

DES_ALLOCATE_ARRAYS

DES_INIT_ARRAYS

CHECK_DES_DATA

DES Init Namelist

CFFCTOW

CFFCTOWALL

CFNOCONTACT

CFRELVEL

CFSLIDE

CFSLIDEWALL

CFUPDATEOLD

CFWALLCONTACT

CFWALLPOSVEL

DRAG_FGS

DES PLACE NEW PARTICLE

GRID_BASED_NEIGHBOR_SEARCH

NSQUARE

OCTREE

QUADTREE

DES_MASS_OUTLET

DES_DRAG_GS

INTERPOLATE_QUANTS

DES NEW PARTICLE TEST

Figure 4: Call graph of the main DES routines called in a MFIX–DEM execution

3.1 Time Integration

Time integration in DEM is one of the most widely researched area in the broad area of molecular
dynamics (Khakimov, 2002; Omelyan et al., 2002; Rougier et al., 2004) . A stable, efficient and
energy preserving time-integration scheme is desirable. Limited time-integration options are cur-
rently available in MFIX–DEM and this is open to further extension in the future. The default time
integration scheme is a first-order technique. In the first-order scheme, the translational velocity,
particle center position, and the angular velocity at time t + ∆t are obtained from values at time t
by

V(i)(t + ∆t) = V(i)(t) +
F

(i)
T (t)

m(i)
∆t, (42)

X(i)(t + ∆t) = X(i)(t) + V(i)(t + ∆t)∆t, (43)

and

ω(i)(t + ∆t) = ω(i)(t) +
T(i)(t)

I(i)
∆t, (44)

respectively, where F
(i)
T and T(i) are the total force and torque acting on the particle (cf. Eqns. 6

and 7).

13

Documentation of open-source MFIX–DEM
software for gas-solids flows - Version 2010-1 Garg, Galvin, Li, and Pannala

Algorithm 1 MFIX–DEM Algorithm

1: Read initial gas flow field, particle positions and velocities, boundary conditions
etc.: This is done through mfix calling get data subroutine. get data in turns
calls init namelist/des init namelist, des allocate arrays, and des init arrays. In addition,
des check data is called to perform some sanity checks.

2: Compute values at next time step: mfix calls time march to compute the gas phase quantities
at the next time step. Time march in turn calls des time march to calculate the updated values
for the particles through the following iteration

3: des time march calling sequence: call particles in cells to determine the particle location on
the background Eulerian grid, call neighbor to determine the particle neighbor information,
call calc force des to compute the forces (particle collisions, friction, drag etc.) and integrate
in cfnewvalues based on the information from all these routines to calculate the new particle
values as well as the drag information that would be used for next continuum solve. Note that
the integration used for the Lagrangian tracking is currently first–order in time and that needs
to be fixed. In addition, the splitting between the continuum and discrete solve is first–order
in time and one could use something like Strang–splitting for an higher–order implementation.

4: Iterate in des time march till Σ∆tdiscrete = ∆tcontinuum

5: Iterate in time march till Σ∆tcontinuum > twrite, trestartetc.
6: Iterate in time march till Σ∆tcontinuum > tstop

In addition to the default first-order time integration scheme, a second-order technique, Adams-
Bashforth scheme, is also available. This method can be turned on by setting the user input
variable DES INTG METHOD to “ADAMS BASHFORTH” in the user-input file (see Table 2 for
a complete list of all available DEM user-input variables). In the Adams Bashforth scheme, the
translational velocity, particle center position, and the angular velocity at time t+∆t are obtained
from values at time t and also t − ∆t by

V(i)(t + ∆t) = V(i)(t) +
0.5

m(i)

(

3F
(i)
T (t) − F

(i)
T (t − ∆t)

)

∆t, (45)

X(i)(t + ∆t) = X(i)(t) + 0.5
(

3V(i)(t) − V(i)(t − ∆t)
)

∆t, (46)

and

ω(i)(t + ∆t) = ω(i)(t) +
0.5

I(i)

(

3T(i)(t) − T(i)(t − ∆t)
)

∆t, (47)

respectively.
Since the Adams-Bashforth scheme requires values from t − ∆t, it is computationally more

expensive than the first-order scheme. Since the time-step in MFIX-DEM’s soft-sphere approach is
based on spring stiffness coefficient, it is reasonably small. Subsequently, the first-order time step-
ping scheme is a good option, which is fast and has less memory requirement (Dziugys and Peters,
2001). It should be noted that the first-order scheme can suffer from poor energy conservation.
However, energy conservation is not as crucial of an issue in gas-solid systems as it is in molecular
or pure granular systems due to the presence of non-conservative forces such as inter-phase drag
force (van der Hoef et al., 2008).

3.2 Neighbor Search Algorithm

One of the most important and time consuming component of any particle–based simulations is the
neighbor search algorithm. In MFIX–DEM code, the user has an option to choose between four

14

Documentation of open-source MFIX–DEM
software for gas-solids flows - Version 2010-1 Garg, Galvin, Li, and Pannala

neighbor search algorithms by specifying an appropriate value for “DES NEIGHBOR SEARCH”
variable in the input file. A value of 1 will use the simplest but also the most expensive “N2”
search algorithm, where N is the total number of particles in the domain. Therefore, it should be
used either for a small system or for debugging purposes. Input values of 2 and 3 correspond to the
“Quadtree” and “Octree” search algorithms. All the above three methods are grid–free methods.
In MFIX–DEM, the particles are binned (or marked) according to the cell their center belongs to.
The fourth method, referred to as the “Cell–linked list” search algorithm, exploits this existing
information and is activated by specifying 4 for “DES NEIGHBOR SEARCH”. As shown by the
2−D schematic in Fig. 5, if the particle of interest is the one represented by the filled circle, then
the particles belonging to 9 (27 for the 3-D case) adjacent cells, along with particles belonging to
the same cell as the particle of interest, are considered as potential neighbors. Thus, only these
particles are further checked against the particle of interest for a neighbor contact. For any of these
search methods, any two particles i and j that are located at X(i) and X(j), and have radii Ri and
Rj , are considered neighbors if they satisfy the following condition

∣

∣

∣
X(i) − X(j)

∣

∣

∣
< K(Ri + Rj), (48)

where K is a user input variable by the name “FACTOR RLM” and its default value is equal to
1.2. If “FACTOR RLM” is specified as one, then only the particles that are either nearly touching
or overlapping will be considered as neighbors. For this setting the neighbor search algorithm
would have to be called each time step to ensure that the simulation does not miss any possible
collision, which would result in high computational expense. Alternatively, a very high value for
“FACTOR RLM” is also not advisable as a particle might end up with more neighbors than the
array sizes can accommodate, resulting in run–time segmentation errors.

Figure 5: 2-D Schematic for “cell–linked list” neighbor search algorithm. Hollow and filled circles
represent particles of different radii.

Another important parameter is the frequency at which the neighbor search algorithm is called.
In the MFIX–DEM implementation, the neighbor–search algorithm is called every time the code
enters the DES modules from the Eulerian solver. Once in the DES modules, the neighbor search

15

Documentation of open-source MFIX–DEM
software for gas-solids flows - Version 2010-1 Garg, Galvin, Li, and Pannala

algorithm is called after every “NEIGHBOR SEARCH N” number of DES iterations. The default
value for “NEIGHBOR SEARCH N” is equal to 25. Between “NEIGHBOR SEARCH N” DES
iterations, if any particle moves by more than “NEIGHBOR SEARCH RAD RATIO” (user in-
put, default value = 1.0) times its radius, then the neighbor search algorithm is called. Since the
system dynamics for every problem are not known a priori, this second test (based on “NEIGH-
BOR SEARCH RAD RATIO”) is critical and ensures against simulations becoming unstable due
to large particle overlaps which might occur if a high value for “NEIGHBOR SEARCH N” is spec-
ified. Out of the four options available for neighbor search, we recommend using the cell-linked
list search algorithm for production runs (DES NEIGHBOR SEARCH=4). Quadtree and Octree
have not been extensively tested with the recently debugged MFIX-DEM code, so the user is very
strongly encouraged to run sanity checks before using Quadtree or Octree. The computationally
most expensive “N2” search algorithm should be used sparingly, preferrably for debugging purposes.

3.3 Gas-Solids Coupling

Since the velocity of solid-phase is evolved by explicit time integration in MFIX-DEM, the gas-solids
coupling is a little different from the one descibed in MFIX numerics manual (Syamlal, 1998). The
numerical details of the gas-solids coupling in MFIX-DEM are discussed in Appendix A.

4 DEM Verification Tests

We wish to perform a series of verification studies for pure granular flows as well as gas–particle
flows. The MFIX–DEM code is extremely complex with the interaction between the fluid–solver,
particle–solver, collision–algorithms, boundaries etc. In addition, the fluid–solver is on a staggered–
grid with scalar quantities solved on the cell centers while the velocities are computed on the cell
faces. With all the above complexities, limited verification may be performed by visually comparing
the code segments to the equations being solved. In addition, a series of verification tests were
performed to probe for the accuracy of each of the units of this complex model. Additional tests
may be added in the future as they become available or as new features are incorporated.

4.1 Freely Falling Particle

Directory: mfix/tests/dem-tests/freely-falling-particle
In this case, a single smooth (frictionless) spherical particle freely falling under gravity from its

initial position bounces upon collision with a fixed wall. For a schematic of the problem see Figure
5. The translational motion of the particle can be described in three stages: free fall, contact and
rebound. Following the work (Chen et al., 2007), an analytic expression for particle motion during
each stage is obtained.

4.1.1 Stage I: Free fall

The expression describing the particle motion during free fall is obtained from the force balance on
the particle

ÿ = −g (49)

ẏ =

∫

ÿdt = −gt (50)

16

Documentation of open-source MFIX–DEM
software for gas-solids flows - Version 2010-1 Garg, Galvin, Li, and Pannala

Figure 6: Schematic for the free fall verification case: a smooth spherical particle falling onto a
fixed wall. The forces acting on the particle during contact are also presented.

y =

∫

ẏdt = ho −
1

2
gt2 (51)

with the initial conditions ẏ(t = 0) = 0 and y(t = 0) = ho and where g is the acceleration due
to gravity, ho is the initial distance of the particle center from the wall, y is the particle’s center
position with respect to the wall, ẏ is the velocity, and ÿ is the acceleration.

4.1.2 Stage II: Contact

The time at which the particle contacts the fixed wall (tc) signifies the end of the free fall stage
and the beginning of the contact stage. This time corresponds to the particle center position equal
to the particle radius (i.e., y(t = tc) = rp) and its value can be found via Eq. 51:

tc =
√

2 (ho − rp) /g. (52)

Using the expression for tc and equation 50, the velocity just prior to contact can be described as

vc = −
√

2gho = −
√

2g (yo − rp) (53)

In this case, the particle-wall collision is treated using a soft-sphere approach, specifically the linear
spring-dashpot model discussed earlier. Accordingly, expression for particle acceleration during
contact is given by

ÿ = −g − kn

mp
(y − rp) − ηn

mp
ẏ (54)

For convenience the terms β = ηn/2
√

knmp and ωo =
√

kn/mp are introduced and equation 54 can
be rewritten and rearranged as

ÿ + 2βωoẏ + ω2
oy = ω2

orp − g (55)

The solution to this equation depends on the value of β. For β < 1 (under damped system) the
expression describing particle motion during contact is

y =

g
ω2

o
cos
(

√

1 − β2ωot
)

+

−
√

2g(ho−rp)+ βg
ωo

ωo

√
1−β2

sin
(

√

1 − β2ωot
)

exp (−βωot) +

(

rp − g

ω2
o

)

(56)

17

Documentation of open-source MFIX–DEM
software for gas-solids flows - Version 2010-1 Garg, Galvin, Li, and Pannala

with the initial conditions ẏ(t = 0) = vc and y(t = 0) = rp. The particle velocity is

ẏ =

−
√

2g (ho − rp) cos
(

√

1 − β2ωot
)

+

βωo

√
2g(ho−rp)−g

ωo

√
1−β2

sin
(

√

1 − β2ωot
)

exp (−βωot) . (57)

4.1.3 Stage III: Rebound

The time at which the particle is no longer in contact with the fixed wall (tr) signifies the end of
the contact stage and the beginning of the rebound stage. This time corresponds to the particle
center position equal to the particle radius (i.e., y(t = tr) = rp) and its value can be found via
equation 56. Using the value of tr and equation 57 the velocity at the end of the contact stage (vr)
can be found. For particle motion during rebound the same starting equation is used as for free
fall, but the initial conditions differ:

ẏ =

∫

ÿdt = −gt + vr (58)

y =

∫

ẏdt = rp + vrt −
1

2
gt2 (59)

with initial conditions ẏ (t = 0) = vr and y(t = 0) = rp.

4.1.4 Results

Equations 51, 56 and 59 are used to solve for particle position versus time and the values of tc and
tr are used to stitch the three stages (free fall, contact, rebound) together. The analytic solution
for particle position and velocity, labeled with (A), is compared to the results obtained from DEM
simulation, labeled with (DEM), in Figure 7(a) for a system with a particle-wall spring coefficient
kn = 5×107 dyne/cm and a particle-wall restitution coefficient en = 0.9. Note that ηn can be found
using equation 30 and knowing kn, en, and the effective mass meff , which for particle-wall contact
is simply taken as the particle mass mp. In all the verification studies of the free fall system the
following values are used: rp = 10 cm, particle material density ρp = 2.6 g/cm3, ho = 50 cm and
g = 980.0 cm/s2. Differences between the DEM results and analytic solution are difficult to discern
in Figure 7(a). Accordingly, the relative percent error in the prediction of particle position (ǫy)
is presented in Figure 7(b) for two values of the spring coefficient (5 × 107 and 1 × 107 dyne/cm)
and three different values of the coefficient of restitution (1.0, 0.9, 0.7). For any quantity Q, the
relative percent error ǫQ between the values predicted by DEM simulation (denoted by {Q}) and
analytically expected values (denoted by QA) can be defined as

ǫQ = 100 ×
∣

∣

∣

∣

QA − {Q}
QA

∣

∣

∣

∣

. (60)

For the four cases shown, the magnitude of the percent error is generally less than 1% during
all three stages. The case characterized by kn = 1× 107 dyne/cm and en = 0.9 is the exception. In
this particular case, the particle center nearly touches the fixed boundary (y → 0); as a result, the
percent error in particle center position is relatively large during the contact stage as the absolute
values of y approach zero. This case also has both the smallest spring constant (softest particle)
and the largest time step for the DEM simulations.

A few reasons for some of the discrepancies observed between the DEM and analytic solution
are discussed. In these DEM simulations, position is updated using a first order scheme (i.e., as a

18

Documentation of open-source MFIX–DEM
software for gas-solids flows - Version 2010-1 Garg, Galvin, Li, and Pannala

time [s]

pa
rti

cl
e

ce
nt

er
po

si
tio

n
y

[c
m

]

pa
rti

cl
e

ve
lo

ci
ty

v
[c

m
/s

]

0 0.1 0.2 0.3 0.4 0.50

10

20

30

40

50

-300

-200

-100

0

100

200

300

A y
A v
DEM y
DEM v

(a)

time [s]

er
ro

ri
n

y,
ε y

(%
)

0 0.2 0.4 0.6

-5

-4

-3

-2

-1

0

1

2

3

4

5
kn=5*107, en=1.0
kn=5*107, en=0.9
kn=1*107, en=0.9
kn=5*107, en=0.7

(b)

Figure 7: (a) Comparison between analytic solution and DEM results for the single particle free
fall case. (a) particle position and velocity for system with kn = 5 × 107 dyne/cm and en = 0.9.
(b) relative percent error between analytic and DEM results for four different systems. In (a) and
(b) the solid vertical line, labeled tc, refers to the time of collision, while in (a) the dotted vertical
line, labeled tr, refers to the time of rebound.

result, the error in position grows during each stage with each successive time step. Other, higher
order schemes could be used to update position with potentially more accurate results. Besides
errors from the specific time-stepping method, errors are also introduced at the start and end of
the collision. In the DEM simulation the particle position will be advanced such that its edge will
overlap with the wall before the contact (collision) is detected, that is, the particle motion is still
considered as freely falling even though it is in contact with the wall. In addition, the particle is
advanced a finite distance beyond the wall while still being considered in contact with the wall.
Either of these errors may be mitigated by using smaller time steps, which in the current DEM
code is achieved by using larger spring constants or restitution coefficients closer to 1.

To this point the discussion has focused on comparing the simulation results to the analytical
solution from a soft-sphere collision model. Since MFIX also employs the soft-sphere model to
resolve collisions, this comparison serves to verify the implementation of the model in the code
and reflects the accuracy of the integration method. As evident by Fig. 7(b), the first-order time-
stepping method appears to be sufficient for this case (errors less than 1%). In addition to the soft-
sphere comparison performed above, the simulation results may also be compared to the analytic
solution from a hard-sphere collision model. The hard-sphere model does not involve a contact
stage (collisions are assumed instantaneous). If the particle is dropped from an initial height ho,
(recall ho = particle center position) then the maximum height it reaches after its first collision
with the wall is e2

n (ho − rp). A general expression for the maximum height of the particle center
attained after k collisions is

hmax,k = (ho − rp) e2k
n + rp. (61)

Figure 8(a) shows the evolution of hmax,k obtained from DEM simulation (denoted DEM) com-
pared with the above analytical expression (denoted A) for different values of en. The problem setup
is the same was used in Fig. 7 with rp = 10 cm, ρp = 2.6 g/cm3, ho = 50 cm and g = 980.0 cm/s2.
The relative percent error in hmax,k (ǫhmax,k

) is shown in Fig. 8(b). This “error” is really a reflection

19

Documentation of open-source MFIX–DEM
software for gas-solids flows - Version 2010-1 Garg, Galvin, Li, and Pannala

kth bounce [-]

h m
ax

,k
[c

m
]

0 2 4
5

10

15

20

25

30

35

40

45

50

55

en=1.0 (A)
en=0.9 (A)
en=0.7 (A)
en=0.5 (A)
en = 1.0 (DEM)
en = 0.9 (DEM)
en = 0.7 (DEM)
en = 0.5 (DEM)

(a)

kth bounce [-]

er
ro

ri
n

h
m

ax
,k

[%
]

0 2 4 6 8 10 12

0

2

4

6

8

kn=5*107, en=1.0
kn=5*107, en=0.9
kn=5*109, en=0.9
kn=5*107, en=0.7
kn=5*107, en=0.5

(b)

Figure 8: Comparison between the analytic solution from a hard-sphere model and the DEM
results for a freely falling particle under gravity. Evolution of (a) hmax,k (the maximum height
attained after k collisions with a wall) and (b) relative percent error (Eq. 60) between analytic and
DEM results for different values of normal coefficient of restitution en (in (a), a constant value of
kn = 5 × 107 is used for all cases) and normal spring stiffness coefficient kn.

of the difference between the hard-sphere and soft-sphere collision models (note errors associated
with time-stepping were already demonstrated in Fig. 7(b) to be minimal in this case). In the limit
of the hard-sphere model (increasing the spring constant) the difference between the two models
will decrease as is demonstrated in Fig. 8(b) for en = 0.9. However, to accurately capture colli-
sions in such a limit requires increasingly small time steps, and in turn, increased computational
time. The error is minimal for the purely elastic case. In contrast, for inelastic collisions the error
may exhibit a local maximum before the particle comes to a rest at which point the error remains
constant.

4.2 Two Stacked Particles Compressed between Two Boundaries

Directory: mfix/tests/dem-tests/stacked-particles
This case study is based on the work of (Chen et al., 2007) and consists of a system of two stacked

particles placed between two fixed walls, as shown in Figure 8, so that they are compressed. The
particles are of equal radius but may have differing densities. The lower wall is placed at y = 0, the
upper wall at y = 3.6rp = yw, and the initial position of the two particles is y1o = y(t = 0) = 0.25yw

and y2o = y(t = 0) = 0.75yw. In this setup the particles and the walls will remain in contact at
all times so that the contact spring force will always be in compression. The differential equation
of motion for this system is examined and a numerical solution obtained which is then compared
with the results from the DEM simulation.

4.2.1 Motion of Particle 1: Lower Particle

A general expression for the acceleration of particle 1 (ÿ1) is as follows

ÿ1 = F1b + F1kw + F12k + F1dw + F12d (62)

20

Documentation of open-source MFIX–DEM
software for gas-solids flows - Version 2010-1 Garg, Galvin, Li, and Pannala

Figure 9: Schematic for the two stacked particle system verification case: two smooth spherical
particles stacked between two fixed walls so that the system is always under compression. The
various forces acting on particle 1 and on particle 2 are also indicated.

where the terms on the right-hand-side represent the various forces acting on particle 1, specifically,
F1b = gravity force, F1kw = particle 1-wall spring force, F1dw = particle 1-wall damping force, F12k=
particle 1-particle 2 spring force, F12d= particle 1-particle 2 damping force. The expressions for
each of these forces are shown below:

F1b = −g, F1kw = −knw

m1
(y1 − rp) , F1dw = −ηn1w

m1
ẏ1,

F12k = −knw

m1
(2rp − (y2 − y1)) and F12d = −ηn12

m1
(ẏ1 − ẏ2) , (63)

where g is the acceleration due to gravity, knw is the particle-wall spring coefficient, F12k is the
particle-particle spring coefficient, ηn1w is the particle-wall damping coefficient for particle 1, ηn12

is the particle-particle damping coefficient between particles 1 and 2, m1 is the mass of particle 1,
rp is the particle radius, y1 is the y position of the center of particle 1 with respect to the lower
wall, ẏ1 is the velocity of particle 1 and similarly, y2 is the y position of the center of particle 2 and
ẏ2 is the velocity of particle 2.

4.2.2 Motion of Particle 2: Upper Particle

A general expression for the acceleration of particle 2 (ÿ2) is as follows

ÿ2 = F2b + F2kw + F21k + F2dw + F21d, (64)

where the terms on the right-hand-side are the various forces acting on particle 2, specifically, F2b =
gravity force, F2kw = particle 2-wall spring force, F2dw= particle 2-wall damping force, F21k =
particle 1-particle 2 spring force, F21d = particle 1-particle 2 damping force. The expressions for
each of these forces are shown below:

F2b = −g, F2kw = −knw

m2
(rp − (yw − y2)) , F2dw = −ηn2w

m2
ẏ2,

F21k = −m1

m2
F12k and F21d = −m1

m2
F12d, (65)

where ηn2w is the particle-wall damping coefficient for particle 2, m2 is the mass of particle 2, and
the other quantities are as defined earlier.

21

Documentation of open-source MFIX–DEM
software for gas-solids flows - Version 2010-1 Garg, Galvin, Li, and Pannala

pa
rti

cl
e

1
ce

nt
er

po
si

tio
n

[c
m

]

0 0.2 0.4 0.6 0.8 10.041

0.042

0.043

0.044

0.045

0.046

0.047

0.048 particle 1 (DEM)
particle 1 (A)

(a)

pa
rti

cl
e

2
ce

nt
er

po
si

tio
n

[c
m

]

0 0.2 0.4 0.6 0.8 10.133

0.134

0.135

0.136

0.137

0.138

0.139

0.14 particle 2 (DEM)
particle 2 (A)

(b)

time*0.001 [s]

pa
rti

cl
e

1
ce

nt
er

po
si

tio
n

[c
m

]

0 0.2 0.4 0.6 0.8 10.041

0.042

0.043

0.044

0.045

0.046

0.047

0.048 particle 1 (DEM)
particle 1 (A)

(c)

time*0.001 [s]

pa
rti

cl
e

2
ce

nt
er

po
si

tio
n

[c
m

]

0 0.2 0.4 0.6 0.8 10.133

0.134

0.135

0.136

0.137

0.138

0.139

0.14 particle 2 (DEM)
particle 2 (A)

(d)

Figure 10: Comparison between analytic solution and DEM results for two stacked particle system.
Panels (a) & (b) correspond to system with en = 1.0. Panels (c) & (d) correspond to system
en = 0.8. The y− position for the center of particle 1 is given in (a) & (c) while the y− position
for the center of particle 2 is given in (b) and (d).

22

Documentation of open-source MFIX–DEM
software for gas-solids flows - Version 2010-1 Garg, Galvin, Li, and Pannala

time*0.001 [s]

pa
rti

cl
e

er
ro

ri
n

y,
ε y

(%
)

0 0.2 0.4 0.6 0.8 1-0.15

-0.1

-0.05

0

0.05

0.1

0.15
particle 1
particle 2

(a)

time*0.001 [s]

pa
rti

cl
e

er
ro

ri
n

y,
ε y

(%
)

0 0.2 0.4 0.6 0.8 1-0.15

-0.1

-0.05

0

0.05

0.1

0.15
particle 1
particle 2

(b)

Figure 11: Relative percent error in particle position (ǫy) between the numeric solution and DEM
results corresponding to the systems presented in Figure 10. Panels (a) and (b) correspond to
systems with en = 1.0 and en = 0.8, respectively.

4.2.3 Results

An analytic expression for the motion of each particle can readily be obtained in the case of perfectly
elastic (F1dw = F2dw = F12d = 0) equal mass (m1 = m2) particles. For particles of unequal mass
(m1 6= m2) and inelasticity, the problem becomes more complicated. Accordingly, a numerical
solution is found using numerical methods, specifically, using the Lsode function with the default
options as implemented in GNU Octave Hindmarsh (1983). This function is designed to solve a
set of differential equations with the form dy

dt = f(y, t) with y(to) = yo. Therefore, the two second
order differential equations describing the system (62 and 64) are re-written as a set four first order
differential equations. The four coupled first order differential equations are then solved using Lsode
with the initial conditions ẏ1(t = 0) = 0, ẏ2(t = 0) = 0, y1(t = 0) = 0.25yw and y2(t = 0) = 0.75yw.

In all the verification studies of the two stacked particle system the following values are used:
rp = 0.05 cm, ρp1 = 20 g/cm3, ρp2 = 10 g/cm3, kn = knw = 1 × 106 dyne/cm, and g =
980.665 cm/s2. Thus, the lower particle is twice as dense as the upper particle (m1 = 2m2).
Two coefficients of restitution are tested, a perfectly elastic case (en = 1) and a slightly inelastic
case (en = 0.8). (Recall that the damping coefficients are determined using Eq. 30 and knowing
the spring constants, the restitution coefficients, and the effective masses).

The numerical solution for each particles position, labeled (A), is compared to the results
obtained from DEM simulation, labeled (DEM), in Figures 10(a)- 10(d) for both restitution co-
efficients examined. Differences between the DEM results and numerical solution are difficult to
discern. Accordingly, the relative percent error in the prediction particle position (ǫy) is presented
in Figure 11. For the two cases shown, the magnitude of the percent error is generally less than
0.2% indicating that the DEM results agree well with the numerical solution.

23

Documentation of open-source MFIX–DEM
software for gas-solids flows - Version 2010-1 Garg, Galvin, Li, and Pannala

4.3 Ball Slipping on a Rough Surface

Directory: mfix/tests/dem-tests/rolling-ball

Figure 12: Schematic of the second verification problem. A spherical ball with finite translational
velocity and zero angular velocity is placed on a rough surface. Forces acting on the ball is shown
by the free body diagram on the right.

In this second verification problem, a spherical ball with finite translational velocity but zero
angular velocity is left on a rough surface, also shown by the schematic in Fig. 12. As a result of
finite slip at the point of contact between the ball and the rough surface, rolling friction will act
in the direction shown in Fig. 12. This rolling friction will reduce the translational velocity and,
at the same time, generate an angular velocity until there is zero slip at the point of contact, i.e.
v = ωR. After the zero slip condition is reached, rolling friction will cease to act and the solid ball
keep on moving with fixed translational and angular velocities.

From the force balance shown in the free body diagram, the normal contact force Fn = W = mg,
where W and m are, respectively, the weight and mass of the spherical ball, and g is the acceleration
due to gravity. The tangential contact force Ft, which is the force due to rolling friction, is equal
to µmg. Therefore, the evolution equations for translational and angular velocities become

dvx

dt
= −µg, (66)

and
dω

dt
=

µmgR

I
, (67)

where I = 2/5mR2 is the moment of inertia of the spherical ball. The above equations can be
integrated with the initial conditions {vx, ω}t=0 = {v0, 0}, where v0 is the initial translational
velocity of the ball. Since the evolution equations for vx and ω are known, the time ts at which
slipping ends (i.e. vx = ωR), or rolling friction ceases to act, can be calculated analytically. This
time ts is

ts =
2v0

7µg
. (68)

The non–dimensional translational and angular velocities at ts are

{

v′x, ω
′
}

t=ts
=

{

vx

v0
,
ωR

v0

}

t=ts

=

{

5

7
,
5

7

}

(69)

Fig. 13 shows the comparison of t′ = µgts/v0 (left axis), and {v′x, ω′}t=ts
(right axis) obtained

from DEM simulation with the analytic values for different values of coefficient of friction. The
relative error, not shown, is always less than 0.1%.

24

Documentation of open-source MFIX–DEM
software for gas-solids flows - Version 2010-1 Garg, Galvin, Li, and Pannala

µ

t’

{v
x’,

ω
’}

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.285

0.2855

0.286

0.2865

0.287

0.2875

0.71424

0.71426

0.71428

0.7143

0.71432

t’ (DEM)
vx’ (DEM)
ω’ (DEM)
t’ (A)
{vx, ω’ (A)}

Figure 13: Comparison of t′ = µgts
v0

(left axis), and {v′x, ω′}t=ts
(right axis) obtained from DEM

simulation with the expected values for different values of coefficient of friction.

The above three test cases have been limited to pure DEM simulations with the objective of
verifying each component of the spring-dashpot model independently. In the next few test cases
the objective is now shifted to CDM simulations. Therefore, in regard to CDM simulations, we
verify and validate the gas-solids coupling through simple verfication and qualitative analyses.

4.4 Particle Terminal Velocity

Directory: mfix/tests/dem-tests/terminal-velocity
In this verification test case, the implementation of gas-solids coupling (through interphase drag

force) is examined. For a very small spherical particle falling under gravity in gas-phase which is
flowing in vertically upwards direction, the velocity of particle evolves by

dvp

dt
=

g(ρp − ρg)

ρp
− 3

4

ρg |vp − vg|2
dpρp

Cd, (70)

where dp is the particle diameter, g the gravitational acceleration, ρp and ρg are densities of
particle and gas, respectively, and Cd is the drag coefficient. The drag coefficient Cd is estimated
from the Schiller and Naumann (1933) drag correlation for single particle in an unbounded medium,
which is

Cd =
24

Re
(1 + 0.15Re0.687) (71)

where Re is the Reynolds number based on slip velocity between particle and gas-phase, and is

defined as Re =
ρg |vp − vg| dp

µg
. It is worth noting that the pressure form drag force has been

neglected in the above particle velocity evolution equation due to the assumption of very small
particle (particle diameter equal to 100 µm in this test case).

The gas-phase is assumed to be flowing upwards at 0.4 m/s and the particle’s intital velocity is
equal to zero. Given the initial conditions and properties of the particle and gas flow, Eq. 70 can
be solved numerically (using the above from for Cd) to obtain particle velocity at any time. When

25

Documentation of open-source MFIX–DEM
software for gas-solids flows - Version 2010-1 Garg, Galvin, Li, and Pannala

Time (s)

P
ar

tic
le

ve
lo

ci
ty

(m
/s

)

0 0.2 0.4
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

num. sol.
Decoupled
Coupled

Figure 14: Comparison of the particle velocity evolution obtained from MFIX-DEM with the
nmerical solution of Eq. 70. (gas: ρg=1.2 kg/m3, µg=1.8×10−5 Pa.s, and ug=0.4 m/s; particle:
ρp=2000 kg/m3, dp=100 µm).

the weight of particle is exactly balanced by the upward buoyancy and drag forces, the terminal
velocity is reached which is obtained from the numerical solution of Eq. 70.

Two different cases are considered in this test case. In the first case (referred to as decoupled
case), the gas-phase velocity is fixed and does not evolve. In the second case (referred to as coupled
case), the gas-phase velocity also evolves and is affected (through interphase drag force) by the
presence of freely falling particle. The evolution of particle velocity obtained from MFIX-CDM for
the two cases (decoupled and coupled) is compared with numerical solution of Eq. 70 in Fig.14.
It can be seen from the figure that the particle velocity obtained from MFIX-CDM compares
excellently with the numerical solution for both cases considered. This test verifies the gas-solids
coupling. It should be mentioned that this a very simple, and also limited, test to verify the gas-
solids coupling. This is because the very week interphase drag force does not cause any significant
change to the gas-phase velocity field.

4.5 Advection of a circle and sphere in an oscillating vortex field

Directories: mfix/tests/dem-tests/circle-advection and mfix/tests/dem-tests/sphere-
advection

In this case we subject the particles arranged in a circle or sphere to an off-centered oscillating
vortex field. The particles get distorted from the initial arrangement but return to the original
configuration after one cycle and this is good procedure to ascertain any errors introduced for
drag calculations. In particular this case tests the gas velocity interpolation routines in arbitrary
directions. This test case is typically used in testing advection algorithms (Rider and Kothe, 1998;
Liovic et al., 2006; Leveque, 1996).

Deformable vortex in 2D: We use the single vortex velocity field typically used in testing algo-
rithms for interface tracking (Rider and Kothe, 1998) with temporal deformation (Leveque, 1996).
The particles are seeded in a circle of radius 0.15 off-centered at (0.5, 0.75) in a unit square box

26

Documentation of open-source MFIX–DEM
software for gas-solids flows - Version 2010-1 Garg, Galvin, Li, and Pannala

Figure 15: Schematic of the advection of the particles on a circle in a oscillating vortex field

(see the schematic in Fig. 15) with the following gas-phase velocity field

u = 2 sin2(πx) sin(2πy) cos(πt/T), (72)

v = − sin(2πx) sin2(πy) cos(πt/T). (73)

The particles in the circle in the vortex are sheared in arbitrary directions (because the center
of the particles is off-centered to that of the vortex) and the degree of deformation will depend
on the value of T . In our case, we have chosen T = 0.25, to test the small deformations over
several periods to track the error. Fig. 16 shows the particles along with gas velocity vectors
at t = 0, T/5, 2T/5, 3T/5, 4T/5, T, 2T , and 16T . As can be seen in this case, the particles are
deformed at t = T/5, 2T/5, 3T/5, and 4T/5 and restored to original location at t = T, 2T , and 16T
as expected. We can repeat the case for 3D where the particles are on the sphere of radius 0.5 and
centered at (0.35, 0.35, 0.35) using the following velocity field (Liovic et al., 2006):

u = 2 sin2(πx) sin(2πy) sin(2πz) cos(πt/T), (74)

v = − sin(2πx) sin2(πy) sin(2πz) cos(πt/T), (75)

w = − sin(2πx) sin(2πy) sin2(πz) cos(πt/T). (76)

We have plotted the L1 error for the 2D case as a function of number of cycles in Fig. 17. It can
be seen that the error is below 2.5× 10−5 after 15 cycles and this test case verifies the gas-particle
coupling as well as associated interpolation schemes work well in 2D and a similar analysis can be
performed for the 3D case.

4.6 Particle Motion in Vortex

Directory: mfix/tests/dem-tests/particle-vortex

27

Documentation of open-source MFIX–DEM
software for gas-solids flows - Version 2010-1 Garg, Galvin, Li, and Pannala

(a) t = 0 (b) t = T/5 (c) t = 2T/5

(d) t = 3T/5 (e) t = 4T/5 (f) t = T

(g) t = 2T (h) t = 16T

Figure 16: Figure showing the gas velocity vectors along with particle locations at t =
0, T/5, 2T/5, 3T/5, 4T/5, T, 2T , and 16T).

28

Documentation of open-source MFIX–DEM
software for gas-solids flows - Version 2010-1 Garg, Galvin, Li, and Pannala

Figure 17: L1 error as a function of the number of the cycles of the imposed oscillating vortex field

This case studies the motion of particles in a two-dimensional Talylor-Green vortex flow. The
gas velocity components in a 2D Taylor-Green vortex flow are

ug = −cos(kxx) sin(kyy), (77)

in the x- direction, and
vg = sin(kxx)cos(kyy), (78)

in the y- direction. In the above equations, kx and ky are the wavenumber of Taylor-Green vortices.
The extent of gas-particle interaction with the vortex flow depends on the relaxation time of

the particle compared to the time available for particle-fluid interaction, characterized by Stokes
number as

St =
τp

τf
, (79)

where τp is the particle relaxation time (also know as aerodynamic response time) defined as

τp =
ρpdp

2

18µg
(80)

and τf is the response time for the flow, estimated by

τf =
L

U
(81)

where L and U are the characteristic length and characteristic velocity of the flow, respectively.
Figure 18 shows the flow patterns of particles in Taylor vortex at different Stokes numbers. For

very small particles with St ≪ 1 (see Figure18(d)), they tend to be in dynamic equilibrium with the
carrier fluid and follow the streamlines of the flow closely, hence particles movements are strongly
controlled by the vortex structure. For large particles with St ≫ 1, they are barely affected by the
flow field due to their large inertia and are persistent in maintaining their own movement as shown
in Figure 18(a). However, for St ∼ 1 (Figures 18(b) and 18(c)), the particles tend to be centrifuged
from the vortex cores and accumulate at the edge of the vortices.

29

Documentation of open-source MFIX–DEM
software for gas-solids flows - Version 2010-1 Garg, Galvin, Li, and Pannala

(a) St = 20 (b) St = 2

(c) St = 0.2 (d) St = 0.002

Figure 18: Snapshot of solid particles in Taylor-Green vortex for different Stokes numbers. Solid
lines represent the gas-flow streamlines and dots represent the solid particles.

30

Documentation of open-source MFIX–DEM
software for gas-solids flows - Version 2010-1 Garg, Galvin, Li, and Pannala

5 Summary

Multiphase flows are prevalent in different natural phenomenon and various industrial processes.
While these flows are practically important, they are also extremely complex and this is largely
due to their multiscale nature: flows may span multiple time and length scales. As discussed
in the introduction many Computational Fluid Dynamic (CFD) codes have been developed that
attempt to predict the hydrodynamics and related characteristics of multiphase flows in order
to provide insights into the systems. These codes may differ in their mathematical modeling
approach and/or solution technique. The focus of this document has been on the continuum
discrete method capability of the open source code MFIX, that is, MFIX–DEM. The underlying
theory (e.g., governing equations & physical models) was presented first, followed by the numerical
implementation and a series of verification tests.

An important step prior to the application of any model is verification and validation of that
model. Verification refers to the process of evaluating the numerical accuracy of a model (Grace
and Taghipour, 2004) where the accuracy of the solution algorithm can be assessed by applying
the model to problems for which the solution is already known (e.g., via an analytical solution
of a limiting case). This approach should reveal whether the code contains errors but does not
guarantee that it is completely correct. That is, the code may show agreement with the solution
for one test problem, but disagreement with that of another untried test problem which may invoke
different components of the code. Another obstacle in conducting verification is that relatively
few problems are available in multiphase flows in which an exact solution is available (Grace and
Taghipour, 2004). With this in mind, the current effort included a series of test cases, of varying
complexity, which were selected for their ability to test different aspects of the code.

Cases 1 and 2 (freely falling particle and two stacked particles) targeted the implementation
of the normal collision model and the time stepping algorithm. Case 3 (ball slipping) targeted
implementation of the tangential force model. Case 4 (terminal velocity) was slightly more complex
than the first three cases and served as a relatively simple test of the drag force. For this case,
the code was invoked both with and without coupling to the fluid phase. The final two test cases
were again more complex and were designed to target the interpolation routines, which are used
when the particles and fluid are coupled. All of these cases demonstrate fairly good agreement
with the corresponding analytic solution (when available) or yielded the anticipated behavior for
the problem.

Practically speaking, full verification is not possible (one cannot prove that numerical formula-
tion and corresponding code is free of bugs), however, an acceptable level of confidence in the CDM
model was pursued. Additional test cases may be developed in the future and applied to test other
aspects of the code. Moreover, as the code may continue to evolve and as new features are added,
aptly designed test cases will be needed to verify the new code.

While verification has been the primary focus, validation is another important step prior to
using the model for physical insights. Validation refers to the process of assessing the ability of
a (verified) model to accurately predict the physical phenomena observed experimentally (Grace
and Taghipour, 2004). Good validation involves testing the model against data for a wide range of
conditions. Context, however, is also important in the validation process as different applications
may require different degrees of validation. For example, a model may be validated on the basis of
showing correct trends but not for purposes of engineering design. Like verification, full validation
is not practically possible as some future experiment may show deficiencies in the model which
had previously gone undetected (Grace and Taghipour, 2004). The current effort did not include
any validation studies and this is left for future work and to those who desire to use the code for
simulating real systems.

31

Documentation of open-source MFIX–DEM
software for gas-solids flows - Version 2010-1 Garg, Galvin, Li, and Pannala

6 Future Work

As mentioned MFIX–DEM is an evolving code. While a well-verified basic foundation has been cre-
ated for performing CDM simulations, areas in need of additional development and/or investigation
exist. Some possible topics/areas are listed below.

Coarse graining capabilities

Electrostatics

Improved neighbor search algorithms

Heat and mass transfer

Chemical reactions

Lee-Edwards boundary conditions

Efficient parallel implementation

This is not an all inclusive list and user input is welcome (contact the MFIX–DEM email list:
dem@mfix.netl.doe.gov). The intention of this list is to direct those who may be interested to areas
in need of investigation and/or development.

32

Documentation of open-source MFIX–DEM
software for gas-solids flows - Version 2010-1 Garg, Galvin, Li, and Pannala

References

Allen, M. P., Tildesley, D. J., 1989. Computer Simulation of Liquids. Oxford University Press,
Oxford, United Kingdom.

Amsden, A. A., O’Rourke, P. J., Butler, T. D., May 1989. KIVA–II: A Computer Program for
Chemically Reactive Flows with Sprays. Tech. Rep. LA–11560–MS, Los Alamos National Labo-
ratory.

Anderson, T. B., Jackson, R., 1967. A fluid mechanical description of fluidized beds. Ind. Eng.
Chem. Fundam. 6, 527–539.

Bird, G. A., 1994. Molecular gas dynamics and the direct simulation of gas flows. No. 42 in Oxford
engineering science series. Clarendon Press, Oxford.

Boyalakuntla, D. S., Pannala, S., 2006. Summary of discrete element model (dem)
implementation in mfix. Tech. rep., Oak Ridge National Laboratory, From URL
http://www.mfix.org/documents/MFIXDEM2006-4-1.pdf.

Boylakunta, D. J., 2003. Simulation of granular and gas-solid flows using discrete element method.
Ph.D. thesis, Carnegie Mellon University.

Chen, F., 2009. Coupled Flow Discrete Element Method Application in Granular Porous Media
using Open Source Codes. Ph.D. thesis, The University of Tennessee, Knoxville.

Chen, F., Drumm, E. C., Guiochon, G., 2007. Prediction/Verification of Particle Motion in One
Dimension with the Discrete-Element Method. International journal of geomechanics 7, 344–352.

Cundall, P. A., Strack, O. D. L., 1978. The Distinct Element Method as a Tool for Research in
Granular Media. Tech. Rep. NSF Grant ENG76-20711, National Science Foundation.

Drew, D. A., 1971. Average field equations for two–phase media. Stud. Appl. Math. 50, 133–166.

Drew, D. A., 1983. Mathematical modeling of two–phase flow. Annu. Rev. Fluid Mech. 15, 261–291.

Drew, D. A., Passman, S. L., 1998. Theory of Multicomponent Fluids. Applied Mathematical
Sciences. Springer, New York.

Dziugys, A., Peters, B., 2001. An approach to simulate the motion of spherical and non-spherical
fuel particles in combustion chambers. Journal of Granular Matter 3 (4), 231–266.

Frankl, F. I., 1953. On the theory of motion of suspended sediments. Dokl. Akad. Nauk. SSSr,
92–247.

Galizzi, O., Kozicki, J., 2005. YADE-Yet another dynamic engine. Tech. rep., Available
at:http:yade.berlios.de.

Garzo, V., Dufty, J. W., Hrenya, C. M., 2007. Enskog theory for polydisperse granular mixtures. i.
navier-stokes order transport. Physical Review E (Statistical, Nonlinear, and Soft Matter Physics)
76 (3), 031303.

Grace, J. R., Taghipour, F., 2004. Verification and validation of CFD models and dynamic similarity
for fluidized bed. Powder Technology 139, 99–110.

33

Documentation of open-source MFIX–DEM
software for gas-solids flows - Version 2010-1 Garg, Galvin, Li, and Pannala

Hindmarsh, A. C., 1983. Odepack, a systematized collection of ode solvers , r. s. stepleman et
al. (eds.), north-holland, amsterdam, (vol. 1 of), pp. 55-64. IMACS Transactions on Scientific
Computation 1, 55–64.

Itasca, I., Accesssed January 2010. Fixed coarse-grid fluid scheme in PFC2D, The PFC2D user’s
manual. Available at http:www.itascacg.comhome.php.

Kashiwa, B., Rauenzahn, R. M., 1994. A Multimaterial Formalism. Tech. Rep. LA-UR-94-771, Los
Alamos National Lab.

Kataoka, I., Serizawa, A., 1989. Basic equations of turbulence in gas–liquid two–phase flow. Intl.
J. Multiphase Flow 15 (5), 843–855.

Khakimov, Z. M., 2002. New integrator for molecular dynamics simulations. Computer Physics
Communications 147 (1-2), 733 – 736.
URL http://www.sciencedirect.com/science/article/B6TJ5-45NGNS5-C/2/8b1ebb4f5da27853fa5d33d925d

Leveque, R. J., 1996. High-resolution conservative algorithms for advection in incompressible flow.
SIAM Journal on Numerical Analysis 33 (2), 627–665.

Liovic, P., Rudman, M., Liow, J. L., Lakehal, D., Kothe, D., 2006. A 3d unsplit-advection vol-
ume tracking algorithm with planarity-preserving interface reconstruction. Computers and Fluids
35 (10), 1011–1032.

Omelyan, I. P., Mryglod, I. M., Folk, R., May 2002. Optimized verlet-like algorithms for molecular
dynamics simulations. Phys. Rev. E 65 (5), 056706.

O’Rourke, P., Amsden, A. A., 1987. The TAB Method for Numerical Calculation of Spray Droplet
Breakup. SAE Paper 872089.

Rider, W. J., Kothe, D. B., 1998. Reconstructing volume tracking. Journal of Computational
Physics 141 (2), 112–152.

Rougier, E., Munjiza, A., John, N. W. M., 2004. Numerical comparison of some explicit time
integration schemes used in dem, fem/dem and molecular dynamics. International Journal for
Numerical Methods in Engineering 61 (6), 856–879.

Savage, S. B., Jeffrey, D. J., 1981. The stress tensor in a granular flow at high shear rates. J. Fluid
Mech. 110, 255–272.

Schiller, L., Naumann, A. Z., 1933. A Drag Coefficient Correlation. Z. Ver. Deutsch Ing., 318–320.

Silbert, L., Ertas, D., Grest, G., Halsey, T., Levine, D., Plimpton, S., 2001. Granular flow down an
inclined plane: Bagnold scaling and rheology. Physical Review E 64.

Subramaniam, S., 2000. Statistical representation of a spray as a point process. Phys. Fluids 12 (10),
2413–2431.

Syamlal, M., 1998. Mfix documentation: Numerical guide. Tech. Rep. DOE/MC31346-5824,
NTIS/DE98002029, National Energy Technology Laboratory, Department of Energy, see also
URL http://www.mfix.org.

34

Documentation of open-source MFIX–DEM
software for gas-solids flows - Version 2010-1 Garg, Galvin, Li, and Pannala

Syamlal, M., Rogers, W., O’Brien, T. J., 1993. Mfix documentation: Theory guide. Tech. Rep.
DOE/METC-95/1013, NTIS/DE95000031, National Energy Technology Laboratory, Depart-
ment of Energy, see also URL http://www.mfix.org.

Teletov, S. G., 1958. Problems of the hydrodynamics of two–phase mixtures. I. Vestn. Mosk. Gos.
Univ., Ser. Mat. Mekh. Astron. Fiz. Khim. 2, 15–27.

van der Hoef, M. A., van Sint Annaland, M., Deen, N. G., Kuipers, J. A. M., 2008. Numerical
simulation of dense gas-solid fluidized beds: A multiscale modeling strategy. Annu. Rev. Fluid
Mech. 40, 47–70.

Weber, M., 2004. Simulation of cohesive particle flows in granular and gas-solid systems. Ph.D.
thesis, University of Colarado.

Williams, F. A., 1958. Spray combustion and atomization. Phys. Fluids 1 (6), 541–545.

35

Documentation of open-source MFIX–DEM
software for gas-solids flows - Version 2010-1 Garg, Galvin, Li, and Pannala

A Gas-phase pressure correction for MFIX-DEM

Contributed by Jin Sun. (email: jsunia@gmail.com)
The discretization equation for fluid pressure is derived for the special case where solid parti-

cle dynamics is solved by DEM method. The derivation procedure follows the corresponding part
in the MFIX numerics documentation (Syamlal, 1998).

The discretized x-momentum equations for fluid phases, for example, is

a0p(u0)p =
∑

nb

a0nb(u0)nb + b0 − Ap(ε)p [(Pg)E − (Pg)W] + F10 [(u1)p − (u0)p] ∆V. (82)

Use the pressure field P ∗
g and void fraction field ε∗0 from the previous iteration to calculate tentative

values of the velocity fields:

a0p(u
∗
0)p =

∑

nb

a0nb(u
∗
0)nb + b0 − Ap(ε

∗
0)p
[

(P ∗
g)E − (P ∗

g)W
]

+ F10 [(u∗
1)p − (u∗

0)p]∆V. (83)

The solid velocity (u∗
1)p is simply treated as the value from the previous time step and the value

does not change during the iteration process, i.e., (u∗
1)p = (u1)p, since the solid momentum equation

is not solved during this process. Equation 83 is thus re-written as

(a0p + F10∆V)(u∗
0)p =

∑

nb

a0nb(u
∗
0)nb + b0 − Ap(ε

∗
0)p
[

(P ∗
g)E − (P ∗

g)W
]

+ F10(u1)p∆V. (84)

Let the actual values differ from the starred values by the following corrections

(Pg)E = (P ∗
g)E + (P ′

g)E ,

(Pg)W = (P ∗
g)W + (P ′

g)W ,

(u0)p = (u∗
0)p + (u′

0)p,

(u0)nb = (u∗
0)nb + (u′

0)nb. (85)

Substituting the corrections in Eq. 85 into Eq. 82 and subtracting Eq. 84 from the resulting equation
results in

(a0p + F10∆V)(u′
0)p =

∑

nb

a0nb(u
′
0)nb − Ap(ε

∗
0)p
[

(P ′
g)E − (P ′

g)W
]

. (86)

Neglecting the convection term in the above equation results in

(a0p + F10∆V)(u′
0)p = −Ap(ε

∗
0)p
[

(P ′
g)E − (P ′

g)W
]

. (87)

Therefore, u′
0 becomes

(u′
0)p = − Ap(ε

∗
0)p

(a0p + F10∆V)

[

(P ′
g)E − (P ′

g)W
]

, (88)

which can be rewritten as
(u′

0)p = −d0p

[

(P ′
g)E − (P ′

g)W
]

, (89)

where

d0p =
Ap(ε

∗
0)p

(a0p + F10∆V)
. (90)

Therefore, the velocity correction is given by

(u0)p = (u∗
0)p − d0p

[

(P ′
g)E − (P ′

g)W
]

. (91)

The rest of derivation is the same as that in the MFIX numerics documentation (Syamlal, 1998).
The resulting pressure correction equation is also in the same form except that d0p is given by
Eq. 90

36

Documentation of open-source MFIX–DEM
software for gas-solids flows - Version 2010-1 Garg, Galvin, Li, and Pannala

B MFIX–DEM file list with purpose

Below is the List of all the files in /model/des and their purpose
NOTE: The equations solved in a subroutine are mentioned in the header of each file and they are
also added to the Doxygen document appended to this document

calc force des.f Call all the subroutines needed to compute the inter-
particle collision force on each particle (Eq. 26) due
to its neighbors.

cfassign.f Assign the necessary values to each particle (such
as, particle volume, mass, moment of inertia) for
DEM computation. Boundary conditions are as-
signed based on the input. Assigning DEM gravity
vector from MFIX input. Calculating damping coef-
ficients (such as ηnmℓ from Eq. 30) and collision time
tcoln,mℓ (Eq. 29) for particle–particle and particle–wall
collisions. Finally calculate DTSOLID, which is equal
to one–fifty of the minimum collision time.

cffctowall.f Calculate the total contact force and Torque on a par-
ticle in a particle-wall collision.

cffctow.f Calculate the total contact force and torque on a par-
ticle in a particle-particle collision.

cfnewvalues.f Calculate the new values of position and velocity for
the current time step from the values at previous time
step. This is done explicitly.

cfnocontact.f The subroutine sets all forces on a particle to zero
if the particle is found to have no neighbors (either
particles or walls).

cfrelvel.f Calculate the relative velocity Vij (Eq. 11), and its
normal Vnij (Eq. 14) and tangential Vtij (Eq. 15)
components. Also calculate the normal ηij (Eq. 10)
and tangential tij (Eq. 16) vectors in the plane of
contact.

cfslide.f Check for Coulomb’s friction law (Eq. 24) and limit
the maximum value of the tangential force on a par-
ticle in contact with another particle.

cfslidewall.f Check for Coulomb’s friction law and limit the max-
imum value of the tangential force on a particle in
contact with a wall.

cfupdateold.f Update the old values of particle position and velocity
with the new values computed.

cfwallcontact.f Check to see if a particle is in contact with any of the
walls

cfwallposvel.f Assign the wall particle a position and velocity.

des allocate arrays.f Dynamic memory allocation for DEM arrays

des functions.f DEM dot product function and cross product sub rou-
tine

37

Documentation of open-source MFIX–DEM
software for gas-solids flows - Version 2010-1 Garg, Galvin, Li, and Pannala

des granular temperature.f Calculate the granular temperature for the DEM par-
ticles

des init arrays.f Initialize DEM arrays.

des init namelist.f Initialize DEM variable name list.

des time march.f Time marching for solids treated using DEM.

discretelement mod.f Module containing the variable declaration.

drag fgs.f Calculate the drag force and pressure force on each
particle due to the surrounding fluid.

gas drag.f Enter the drag terms into Am and Bm matrices for
gas phase calculations.

generate particle config.f Generates an initial lattice distribution.

grid based neighbor search.f Cell linked–list based particle neighbor search algo-
rithm for both periodic and non–periodic boundary
conditions.

make arrays des.f Read the initial particle position, velocity, radius and
density details.

neighbour.f Perform neighbor search (n-square or
quadtree/octree).

nsquare.f Perform n-square neighbor search.

octree.f Perform octree search (3D only)

particles in cell.f Locate the fluid cell in which each particle lies in order
to compute the solids volume fraction in that cell and
hence the cell void fraction.

quadtree.f Perform quadtree search (2D only)

write des data.f Write DEM output files in Paraview compatible for-
mat.

write des restart.f Write DEM restart file

read des restart.f Read DEM restart file

randomno mod.f Generate uniform and normally distributed random
variates

C MFIX–DEM user input variables

The DEM User-Input variables are listed below.

VARIABLE TYPE DESCRIPTION

DISCRETE ELEMENT
[F]

L Use discrete particle model for solids. Must
be TRUE to do DEM.

DES CONTINUUM COUPLED
[F]

L Couple gas and solids flow together.

DES INTERP ON
[F]

L Use an interpolation suite to calculate the
drag force on each particle based on particle
location (Eq. 35) rather than cell averages

38

Documentation of open-source MFIX–DEM
software for gas-solids flows - Version 2010-1 Garg, Galvin, Li, and Pannala

DES INTG METHOD
[EULER]

C Time stepping scheme
EULER - First order Euler scheme
ADAMS BASHFORTH - Second order
Adams Bashforth scheme

DIMN
[UNDEFINED I]

I Specify the dimension of the simulation: 2 or
3. If NO K = ‘.TRUE.’, then DIMN will au-
tomatically be set to 2.

GENER PART CONFIG
[F]

L Automatically generate an initial par-
ticle configuration (position) otherwise
use particle input.dat. Also requires
setting VOL FRAC(M), D P0(M), and
DES EPS XSTART, DES EPS YSTART,
and DES EPS ZSTART. Once defined this
feature will determine the total number
of particles in the system and their initial
placement. particle input.dat file is ignored.

VOL FRAC(m)
[UNDEFINED]

DP Only relevant when GENER PART CONFIG
is T. Volume fraction of the solid phase M for
generating particles in the specified domain

DES EPS XSTART
[UNDEFINED]

DP Only needed if GENER PART CONFIG.
Length of the domain in the x direction
wherein particles may be initially placed.

DES EPS YSTART
[UNDEFINED]

DP Only needed if GENER PART CONFIG.
Length of the domain in the y direction
wherein particles may be initially placed.

DES EPS ZSTART
[UNDEFINED]

DP Only needed if GENER PART CONFIG.
Length of the domain in the z direction
wherein particles may be initially placed.

NFACTOR
[10]

I Only needed if
DES CONTINUUM COUPLED. Num-
ber of times a pure DEM simulation is run
before the coupled DEM simulation is started
(allows settling).

TSUJI DRAG
[F]

L Use Tsuji’s drag correlation

PARTICLES
[UNDEFINED I]

I Total number of particles

PVEL MEAN
[0]

DP Assign initial particle velocities from a Guas-
sian distribution with the specified mean.
Only relevant if PVEL STDEV is not zero. If
used, the assigned velocities will override any
other initial settings.

39

Documentation of open-source MFIX–DEM
software for gas-solids flows - Version 2010-1 Garg, Galvin, Li, and Pannala

PVEL STDEV
[0]

DP If not zero, then assign initial particle ve-
locities from a Guassian distribution with
the specified standard deviation. Used with
PVEL MEAN. If used, the assigned velocities
will override any other initial settings.

PARTICLES FACTOR
[1.2]

DP Expand the size of the particle arrays by an
arbitrary factor (multiple of the number of
particles).

FACTOR RLM
[1.2]

DP Effectively increase the radius of a parti-
cle (multiple of the sum of particle radii)
for detecting neighbor contacts when using
grid based neighbor search or n-square search
methods (see Sec. 3.2 for details).

Boundary Conditions

WALLDTSPLIT
[F]

L Treat wall interaction as a two-particle inter-
action but accounting for the wall properties.
Must be TRUE for DEM.

DES PERIODIC WALLS
[F]

L Periodic wall boundary condition is imposed
on any pair of walls.

DES PERIODIC WALLS X
[F]

L Direction of periodicity: X

DES PERIODIC WALLS Y
[F]

L Direction of periodicity: Y

DES PERIODIC WALLS Z
[F]

L Direction of periodicity: Z

Neighbor Search Parameters

DES NEIGHBOR SEARCH
[1]

I Neighbor search algorithm. 1=N-square;
2=quadtree (for 2D only); 3=octree (for 3D
only); 4=grid based. Options 2 and 3 have
not been recently tested. Use them at your
own risk.

NEIGHBOR SEARCH N
[1]

I Maximum number of steps through a DEM
loop before a neighbor search will be per-
formed. (Search may be called earlier).

MN
[10]

I Maximum number of neighbors per particle

QLM
[1]

I Number of levels to traverse “up” to move
a particle to its new quad. Only needed
when using octree or quadtree based neighbor
search.

QLN
[1]

I Number of levels to traverse “up” to per-
form particle neighbor search. Only needed
when using octree or quadtree based neighbor
search.

40

Documentation of open-source MFIX–DEM
software for gas-solids flows - Version 2010-1 Garg, Galvin, Li, and Pannala

INIT QUAD COUNT
[UNDEFINED I]

I Count to initialize quadtree or octree. Only
needed when using octree or quadtree based
neighbor search.

MQUAD FACTOR
[1.1]

DP Factor to create quadtree or octree arrays
based on the number of particles. Only
needed when using octree or quadtree based
neighbor search.

NEIGHBOR SEARCH RAD RATIO
[1]

DP Ratio of the distance (imaginary sphere ra-
dius) to particle radius that is allowed before
a neighbor search is performed

Particle-particle and Particle-wall contact parameters

DES COLL MODEL
[UNDEFINED C]

C Collision model for the soft-sphere approach.
By default, the linear spring-dashpot (LSD)
model is used (i.e., leave DES COLL MODEL
undefined for LSD model).
Other models include: HERTZIAN.
All models require specifying the fol-
lowing parameters: DES EN INPUT,
DES EN WALL INPUT, MEW, and
MEW W.
The default (LSD) model requires:
KN, KN W, KT FAC, KT W FAC,
DES ETAT FAC, & DES ETAT W FAC.
The HERTZIAN model requires:
DES ET INPUT, DES ET WALL INPUT,
E YOUNG, EW YOUNG, V POISSON, &
VW POISSON.

DES EN INPUT
[UNDEFINED]

DP The normal restitution coefficient for inter-
particle collisions that is used to determine
the inter-particle normal damping factor (see
Sec. 2.2.2 above or routine cfassign.f for de-
tails). Values are stored as a one dimensional
array (see Eq. 32). So if MMAX=3, then 6
values are needed, which are defined as fol-
lows: en11 en12 en13 en22 en23 en33.

DES ET INPUT
[UNDEFINED]

DP Tangential restitution coefficient for inter-
particle collisions. Values are stored as a one
dimensional array. Only needed when using
the Hertzian collision model.

DES EN WALL INPUT
[UNDEFINED]

DP Normal restitution coefficient for particle-
wall collisions that is used to determine the
particle-wall normal damping factor (see cfas-
sign.f for details). Values are stored as a one
dimensional array. So, if MMAX=3, then 3
values are needed, which are defined as fol-
lows: enw1 enw2 enw3.

41

Documentation of open-source MFIX–DEM
software for gas-solids flows - Version 2010-1 Garg, Galvin, Li, and Pannala

DES ET WALL INPUT
[UNDEFINED]

DP Tangential restitution coefficient for particle-
wall collisions. Values are stored as a one di-
mensional array. Only needed when using the
Hertzian collision model.

KN
[UNDEFINED]

DP Normal spring constant for inter-particle col-
lisions. Values are stored as a one dimensional
array. Needed when using the default collision
(LSD) model.

KT FAC
[2/7]

DP Ratio of the tangential spring constant to
normal spring constant for inter-particle col-
lisions. Use it to specify the tangential
spring constant for particle-particle collisions
as KT FAC*KN.

DES ETAT FAC
[0.5]

DP Ratio of the tangential damping factor to the
normal dampign factor for inter-particle colli-
sions. Needed when using the default collision
model.

KN W
[UNDEFINED]

DP Normal spring constant for particle-wall colli-
sions. Needed when using the default collision
model.

KT W FAC
[2/7]

DP Ratio of the tangential spring constant to
normal spring constant for particle-wall col-
lisions. Use it to specify the tangential
spring constant for particle-wall collisions as
KT W FAC*KN W.

DES ETAT W FAC
[0.5]

DP Ratio of the tangential damping factor to the
normal dampign factor for particle wall colli-
sions. Needed when using the default collision
model.

MEW
[UNDEFINED]

DP Particle friction coefficient

MEW W
[UNDEFINED]

DP Particle-wall friction coefficient

E YOUNG
[UNDEFINED]

DP Young’s modulus for the solid phase. Only
needed when using the Hertzian collision
model.

V POISSON
[UNDEFINED]

DP Poisson ratio for the solid phase. Only needed
when using the Hertzian collision model.

EW YOUNG
[UNDEFINED]

DP Young’s modulus for the wall. Only needed
when using the Hertzian collision model.

VW POISSON
[UNDEFINED]

DP Poisson ratio for the wall. Only needed when
using the Hertzian collision model.

Output and Restart Control

DEBUG DES
[F]

L Print out additional information from DEM
model.

42

Documentation of open-source MFIX–DEM
software for gas-solids flows - Version 2010-1 Garg, Galvin, Li, and Pannala

FOCUS PARTICLE
[0]

I If DEBUG DES, then additional information
will be printed for the specified particle num-
ber.

PRINT DES DATA
[F]

L Print DEM output

DES RES DT
[UNDEFINED]

DP If PRINT DES DATA, this is the frequency
at which DES.RES and .RES files will be writ-
ten. This only applies to pure granular sim-
ulations, otherwise for coupled simulation the
restart frequency is controlled by RES DT.

DES SPX DT
[UNDEFINED]

DP IF PRINT DES DATA, this is the frequency
at which DEM data will be written. This
only applies to pure granular simulations, oth-
erwise for coupled simulation the output fre-
quency is controlled by SPX DT(1)

DEM OUTPUT DATA TECPLOT
[F]

L Write several .dat files (e.g. DES DATA.dat
& AVG EPS.dat) rather than the standard
.vtk files. See write des data.f for details.

43

